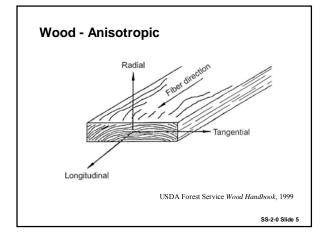

SS-2-0 Slide 2

Section 2.0 Principles of Wood Design

Introduction


- Wood is the primary material for providing temporary shoring during US&R operations.
- Timber design not always part of the structural engineering curriculum.
- Module introduces the principles of timber design and how they relate to US&R shoring.

<section-header><section-header><image><image><image>

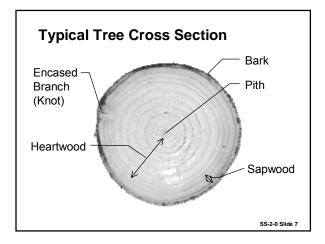
Wood

- Non-Homogeneous primary component comprised of bonded elongated glucose monomers that form the cell walls of wood.
- Orthotropic wood has unique and independent mechanical properties in the directions of three mutually perpendicular axis.
- Anisotropic wood exhibits different mechanical properties when measured along different axes.

SS-2-0 Slide 4

Trees

Given all the different varieties, trees can still be dividing into two broad classes:


- Hardwoods
- Softwoods

Hardwoods – Deciduous trees. Seeds are enclosed in the a flower. Broad leaves.

Softwoods – Coniferous trees. Cone-bearing (seeds are exposed) with needle-like or scale-like evergreen leaves.

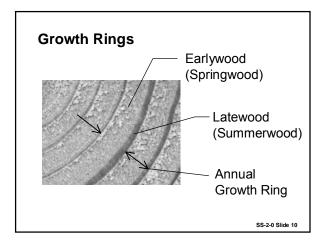
SS-2-0 Slide 6

1

Sapwood

- Mechanism for water and sap transport.
- Contains both living and dead cells.
- Greater portion of the wood in secondgrowth trees.

Heartwood

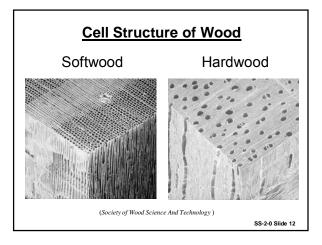

- · Consists of inactive cells.
- Does not assist in water and sap transport.
- May be darker in color than softwood due to extractive content.

SS-2-0 Slide 8

Growth Rings

- A familiar characteristic of a tree or log cross section.
- Also referred to as Annual Rings.
- Found in trees that grow in temperate climates so that distinct yearly growing seasons occur.
- Inner portion of the growth ring forms first in the growing season and is called *Earlywood*.
- Outer portion of the growth ring forms later in the growing season and is called *Latewood*.

SS-2-0 Slide 9



Earlywood

- Fast growing (also referred to Springwood).
- Cells with relatively large cavities and thin walls.
- Less dense and weaker than Latewood.

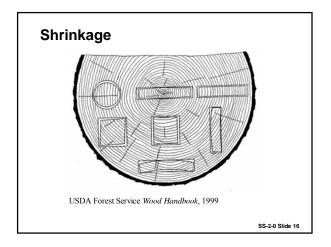
Latewood

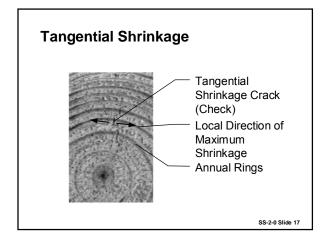
- Slow growing (also referred to Summerwood).
- Cells with relatively small cavities and thick walls.
- More dense and stronger than Earlywood.

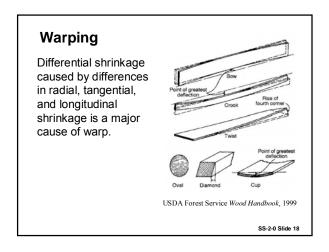
Water

- Water of a living tree can make up $\frac{2}{3}$ of its total weight.
- Water is contained in wood as either bound water or free water.
- Bound water is held within cell walls by bonding forces between water and cellulose molecules.
- Free water is contained in the cell cavities and is not held by bonding forces (like water in a pipe.)

SS-2-0 Slide 13

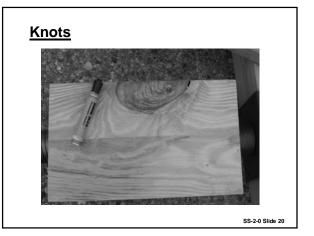

Drying of Wood

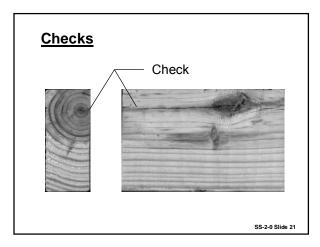

- Structural wood must be dried to reduce its moisture content to an acceptable level for the end user.
- Drying results in an increase in strength and stiffness.
- Drying results in a volume change as the cell wall shrink (shrinkage).
- General Drying processes: Air and Kiln.


SS-2-0 Slide 14

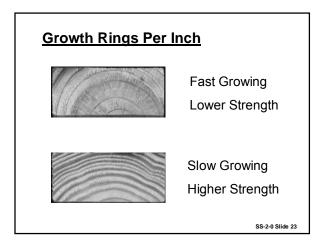
Shrinkage

- Wood is dimensionally unstable when moisture content is reduced below its Fiber Saturation Point (*FSP*) or Green state (approx. 25%).
- Occurs as moisture is removed (seasoning).
- Degree dependent on orientation with grain: tangential, radial, and longitudinal.
- Tangential = shrink abt 1/3% for each 1% moisture
 Radial = shrink abt 1/5% for each 1% moisture
- Radial = shrink abt 1/5% for each 1% moisture
 Longitudinal = Nil for D. Fir & So. Pine
- Desulta in defecta due to grain concreti
- Results in defects due to grain separation.

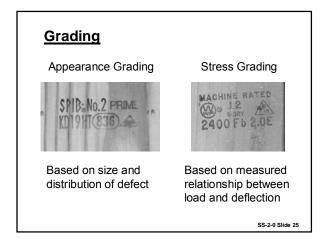


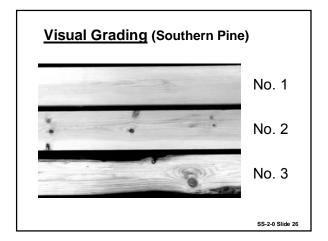

SS-2-0 Slide 19

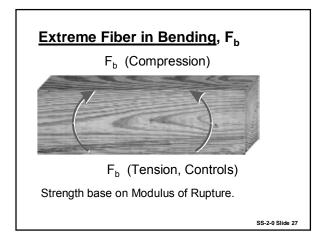
Section 2.0 Principles of Wood Design

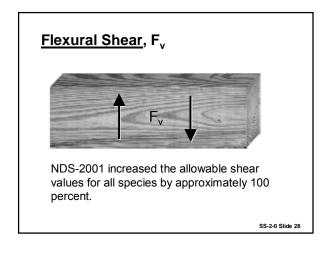


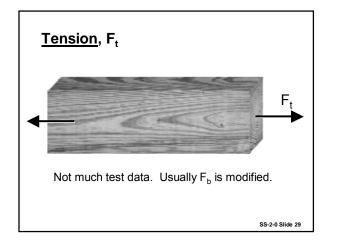
- Wood Species
- Moisture Content
- Growing Defects such as Knots and Checks
- Shrinkage Cracks
- Wood Grain Orientation (slope of grain)
- Growth Rate (rings per inch)

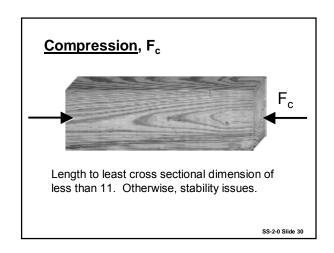


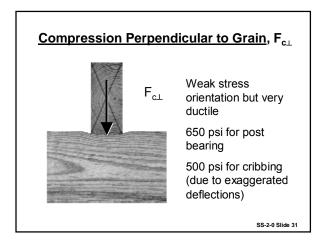

Slope of Grain		
Slope of <u>Grain</u> 0	% of Retained <u>Strength</u> 100%	
1 in 20	93%	
1 in 10	81%	
1 in 5	55%	
		SS-2-0 Slide 22

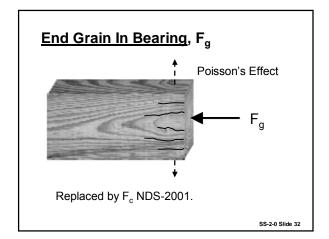



Additional Factors Affecting Strength

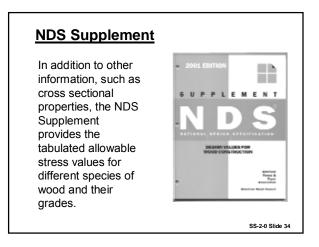

- Decay
- Heartwood and Sapwood
- Shakes
- Wane
 - -(see FOG5 Sect 5 Glossary)
- Reaction Wood

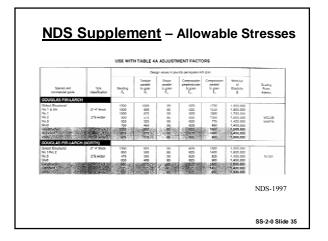






SS-2-0 Slide 33


Section 2.0 Principles of Wood Design

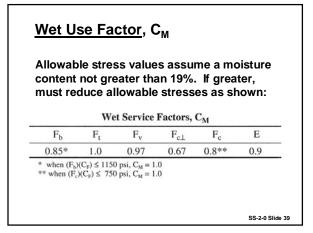


Modulus of Elasticity, E

- Differs with respect to orientation with grain.
- E_L Longitudinal direction (bending stiffness, deflection), tabulated value.
- E_T Tangential and E_R Radial are between 0.01 and 0.10 of E_L.

Adjustment Factors

NDS requires modification of the tabulated allowable stress values based on specific usage conditions as well as to account for stability:


- Duration of Load, C_D
- Size Factor, C_F
- Column Stability, C_P
- Wet Use, C_M

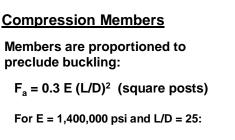
Load Duration Factor, C_D

- Wood can carrying greater maximum loads for shorter periods of time.
- Tabulated allowable stresses assume Live Load conditions (duration up to 10 years).
- Can use 60% increase for Wind and Earthquake loading.
 - Other codes use 1.33 increase
- 100% increase for impact loading - 2 sec or less.

SS-2-0 Slide 37

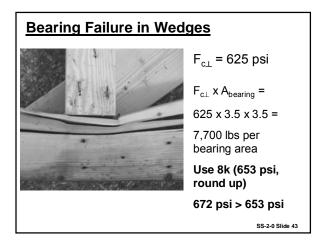
		•			
re Factor, C,					
	tension, and compres- the following size facto		n design values	for dimension 1	lumber 2" to 4
in oc manapired by	are routering size racio	Size Factors, C	Ŧ		
		Fb		F ₁	Fc
		Thickness (breadth)			
Grades	Width (depth)	2" & 3"	4"		
	2", 3" & 4"	1.5	1.5	1.5	1.15
Select Structural.	5-6-	1.4	1.4	1.4	· 1.1
No. 1 & Btr.	8"	1.2	1.3	1.2	1.05
No. 1, No. 2,	10"	1.1	1.2	1.1	1.0
No. 3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
Stud	2". 3" & 4"	1.1	1.1	1.1	1.05
	5" & 6"	1.0	1.0	1.0	1.0
	8° & wider	Use No. 3 Grade tabulated design values and size factors			
Construction & Standard	2", 3" & 4"	1.0	1.0	1.0	1.0
Utility	4-	1.0	1.0	1.0	1.0
	2" & 3"	0.4	-	0.4	0.6

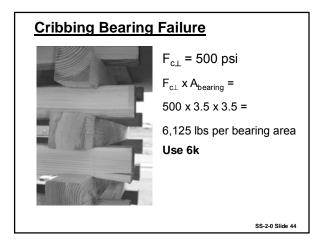
US&R Shoring


- Shoring capacity calculations based on Douglas Fir and Southern Pine.
- See StS FOG5 & SOG, Sect 4 FAQ for other species.
- Based on NDS-1991.
- Allowable stresses may be increased up to 60% for emergency shoring.

SS-2-0 Slide 40

Bending Members


- E = 1,400,000 to 1,600,000 psi
- F_b = 1,500 psi for 4x and 1,200 psi for 6x
- F_v = 95 psi for 4x and 85 psi for 6x (Increased by a factor of 2 in NDS-2001)
- $F_b < M/S = (6M)/(bh^2)$ $F_v < (3V)/(2bh)$

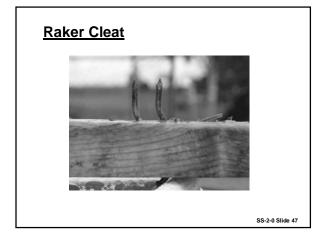

SS-2-0 Slide 41

F_a = 420,000 psi / (25)² = 672 psi

Therefore: $F_a = 672 \text{ psi} > F_{c\perp} = 625 \text{ psi}$

Connections

- Usually steel fasteners that are subject to either:
 - Shear (lateral resistance) Z
 - Withdrawal (tension) W
- Design values for shear are based on mechanics approach while withdrawal values are empirical.
- Connection strength a function of wood (Specific Gravity) and fastener.


SS-2-0 Slide 45

Connections

Four possible failure modes:

- 1. Uniform bearing failure in wood.
- 2. Non-uniform bearing failure in wood (fastener rotation without bending).
- 3. Single plastic hinge in fastener with wood bearing failure.
- 4. Two plastic hinges in fastener with wood bearing failure.

SS-2-0 Slide 46

US&R Wire Nails – Lateral Resistance

Size	Diameter	Length	Z
8d common	0.128″	2-1/2″	90 lbs
16d vinyl coat	0.148″	3-1/4″	120 lbs
16d common	0.162″	3-1/2″	140 lbs

- Penetrate at least 12x dia to use full value.
- May increase value for metal side plates & duration of load (also plywood gusset?)
- For US&R: 8d = 140 lbs, 16d vc = 190 lbs, 16d = 220lb (1.6 x increase - No Splits)

<u>References</u>

- National Design Specifications for Wood Construction and Supplement, American Forest & Products Association, 1991, 1997, and 2001 (www.awc.org).
- 2. Wood Handbook: Wood as an Engineering Material, General Technical Report 113, Forest Products Laboratory, U.S. Dept. of Agriculture, 1999.
- 3. Design of Wood Structures ASD (4th Edition), Breyer, D.E., Fridley, K.J., Cobeen, K.E., McGraw-Hill , 1999.